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Understanding the Discrete Fourier Transform

DFT equations, without insight into what the summations
signify, often look formidable to many engineers. DFT can
be interpreted in terms of spot correlation to understand
the physical meaning of the transform.

By R.N. Mutagi
D iscrete Fourier Transform (DFT) is use

extensively in signal processing applica BF Arialkyg ko Cigital Digital to
tions such as communications, broadcastin| FF =™ Eromyerg ™ I:D'F'%L ot B Sigral > I:-"'I'Hh-‘g = A0
entertainment and many other areas. The DF i R | A
equations often discourage engineers in oth = HE i Diyieal ks Arsalog
fields from understanding the digital signal daman T daimsEn

processing (DSP) literature. With the devei-F_ 1 Tvoical DSP Svet
opment in analog to digital conversion (ADC)'94"¢ - "YPIc& system.
and DSP technology, more and more of tk;g

orrects the oscillator

analog circuits are brought into the arena hase and frequency o
Warsiorm

DSP. For example, in today’s software-del
" . L n spread-spectrum modu
fined radio, the RF signal leaves the analo tiopn we cF:)orreIate a lo-

domain in the early stage of the receiver an%a”y generated pseudd

is converted to digital at intermediate fre'noise (PN) pattern with the| warveloem 2

quency (IF) stage. A typical DSP system i?eceived PN pattern and

shown in Figure 1. correct its phase beforeg
The analog signal is sampled and quarHemoduIating the data.

tized in an ADC and fed to a DSP as a Inthe DSP literature the| Warssform &3

sequence of numbers. A programmable Ds%orrelation is mathemati-

with a suitable architecture dealing with dat% .
- . . ally described by the equa-¢; P
and instructions simultaneously, does thvﬁony y QUa-Figure 2. Finding similarity among waveforms.

number crunching with hardware, executing . tion provides the pattern matching for the
Signa| processing tasks. Understanding DFT two funCthnS. ThIS |nterpretat|0n comes In
is imperative for RF and analog engineers. J(7) = Jxl(t)-xz(HT)df (1) handy when we try to understand the DFT

The Fourier transform converts a signal s equations. While correlation can be viewed
representation from time-domain to frequency Equation 1 provides the correlatigfr) as one function searching to find itself in
domain for frequency analysidowever, the between two functionsu(t) and xe(t) as a another, spot correlation can be interpreted
Fourier transform is a continuous function ofunction of the time shift . For any value of as the measure of how much one function is
frequency and is not suitable for computatioime shiftr , the two functions are multiplied embedded in another. Itis the average of the
with a DSP. DFT representation of the conand the result is integrated over infinity. Foproduct-sum of two functions, or signals,
tinuous-time signal permits the computeperiodic functions this equation is modifiedover the period of interest.
analysis. Here, we develop DFT, beginnin@s

with a simple concept of correlation. B Digcrettla_ spot CCt)_I’re|a'[i0f1 ) sh
_ b ampling a continuous signelt), shown
Spot correlation )= T, ‘O[x](t).xz(Hf)dt &) in Figure 3(a), with a sampling signal at a

A tice. the int i q regular intervalT as in Figure 3(b) gives

- S you natice, the integration and averadgiscrete-time signal with non-zero values at

\t/(\/)av\‘//z]:?erfgrsfﬁ i‘ nsvilgz;g;;%foggﬁug lgf;')}_'r)g are done over one pe_ridd because thg instantsnT as sh%wn in Figure 3(c).

lem intuitively, but we may not always be INaIS aré now power signals. We now in- e can write the spot correlation equa-
\ i troduce a simplified version of Equation 2ion for two discrete-time signals Nfsamples

correct. However, a method exists for meg;, 9 p

suring the similarity between two functions; herein we take away the time shift tand cags

- : .{t as spot correlation.
or waveforms. In signal processing we call i

Suppose we try to find which among the

1 N-1
correlation. 15 y=— le(nT)xz(nT) (4)
We use correlation to estimate a received = *JXI (t).x, (t)dt (3) NS
signal with its known characteristics. For PO Comparing Equation 4 with Equation 2

example, we recover the carrier from a noisy The spot correlation Equation 3, which isve notice that the integration over the
received signal by correlating with a locallysimply the average of the product of twanterval T for the continuous-time signals is
generated ‘clean’ carrier and the clock fronperiodic signals over the period, is the meaeplaced by summation of N terms for dis-
the noisy data by correlating with a ‘clean’sure of similarity betweex(t) andx(t), with ~ crete-time signals. We can drop the sampling
clock. In both cases, the error, the differencgo time shiftr between any of them, i.e. theinterval T from Equation 4 for simplicity and
between the received signal and its estimateorrelation on the spot. Thus, spot correlarewrite it as
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n=0
The termsa(n) andxz(n) now represent sequencedNafiumbers,
andy is their product-sum over the intervialEquation 5 represents
thediscrete spot correlatian

Fourier series
Transformation is an effort to represent an arbitrary signal with a

set of signals (called basis functions) with known characteristics | ke"-

amplitude, frequency and phase. The sum of all components in the set

:iixl (n).x,(n) ®) /\ﬂwﬁ\\\J

Figure 3(a). Continuous-time signal

Il il iy

provides an approximation of the arbitrary signal. The difference
between the original and the replica is an error, measured in terms of
the mean squared error (MSE).

According to Fourier, any arbitrary periodic sigrit), is formed
by adding up an infinite number of sinusoids with frequencies har-
monically related to a fundamental frequergywith proper ampli- X
tude and phase. In other words, any periodic signal can be decpm-
posed into an infinite humber of sinusoids whose frequencies are

Figure 3(b). Sampling signal

integer multiples of the fundamental frequenayof the periodic n
signal. The Fourier series expansioiX(tfis given by : | | .
~ _ = . 'I|'
X(t)=a,+ z [a, cos(nf) + b, sin(nayt) )
n=0 . . . .
Each sine or cosine term has a part, or is embedded).iThe AT SE). (PresEiee Sl
constant termao corresponds to the DC value (zero frequency) of
X(t). The coefficientan and bn tell us the amplitudes of sine an X
cosines, i.e. how much each is contributing(t® How do we find )
the values oé, andbn ? Sincean is the amplitude of theth harmonic *
of the cosine signal that is embedded in the sigftple recognize
that it is nothing but the spot correlation of the cosinex@idHence, : : o
we obtainan andbn by using Equation 3. | === | * Time
1R 1 I
a,=— | (t).cos(no,t)dt e B =
T, i)
and / X
1 T/2 B . &
b == j F(1).sin(no,f)dt ®)
Yﬁ—T/Z
Equation 6 can be written in exponential form as 4 =
a ! p = ey, raguEncy
=06 = Jjneogt — 1 f —
1))=Y c,e™ ©) b}
n=0
and Figure 4. (a) A periodic pulse train and (b) its Fourier series.
1 T/2 5 .
¢, == J X(t)e " dt (10) bl
T -T/2 1
A continuous, periodic sighal can be decomposed into an infin
set, called the Fourier series, of harmonically related frequencies, =T
fundamental frequency being equal to the inverse of the period. e gl
il Tl —
Fourier series to transform i)
Fourier series provides frequency domain representation for o
periodic signals. Unfortunately all signals are not periodic. Spee ®il
music or video signals are examples of non-periodic signals. We n 1
have a method for obtaining frequency domain representation of n
periodic signals. This is precisely what Fourier transform providg /"_"‘\/""_F r\\/"—“‘\ 3
We can get Fourier transform equations from Fourier series eq WT-.=0 10 -Fre-quem-,-
tions following the simple steps in Figure 4. "
We begin with a rectangular pulse train with peffednd widtht B
as Sho.\Nn In Flg.ure. 4(a). We can Obta”.] the fr.equency do.ma!n re%eﬁre 5. (a) As the periodic tends to infinity the periodic signal
sentation for this signal using the Fourier series expression in Edgiomes aperiodic and (b) the frequency spacing in the Fourier series
tion 10. The Fourier series, shown in Figure 4 (b), has line frequenciesces to zero resulting in Fourier transform.
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Figure 6(a). Non-periodic continuous-time signal with its
non-periodic continous-frequency spectrum
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Frequancy Figure 7. An aperiodic discrete-time signal (a) is windowed (b) and the
windowed segment is replicated (c) to make it periodic for which DFT
can be computed.

! The Fourier series in Equation 6 then needs to be modified by
Ak} changing the summation to integration and the discrete frequeacy n
to continuous frequenay. Equation 6 reduces to Fourier transform
as given in Equation 11.

Figure 6(b). Non-periodic discrete-time signal with its
periodic continous-frequency spectrum

x(t)= T [a, cos(w1) +b, sin(w!)]do  (17)

which may be written in exponential form as

x(nT)

s |
Frequancy

3

x(?) = J. X(w)ej“”da) (12)
M=—oc0
Figure 6(c). Periodic discrete-time signal and its The coefficient, or the magnitud¥(w) of the exponente)
periodic discrete-frequency spectrum minimizes the error between the actual signal and its approximation

through the exponents and is again obtained by using the spo
spaced at/Tp Hz and its envelope has the shapsinfx)/(x) withthe  correlation equation as below,
null at 1/t Hz. This example helps us in developing intuitively the w0

Fourier transform from the series when the signal is not periodict%l ®)= J‘ x(t)ef""”dt

the time periodypis increased, itis reflected in the Fourier series wi

reduced frequency spacing because the spacing between the harmor}:| == o . .

ics is equal to the fundamental frequefgy 1/T. In the limit, if T is Thus X(w) tells us how much &« is present ix(t). Equations
increased to infinity the periodic signal becomes aperiodic as shon2nd 13 form the Fourier transform pairs.

in Figure 5(a) and the frequency spacing in the spectrum is reduce
zero as shown in Figure 5(b), making it continuous. This is essenti
the Fourier Transform.

(13)

to .
i,screte Fourier Transform
Let us take a close look at Equations 12 and 13. We note that tc

38

find x(t) or X(w) we need to integrate the
product of two continuous functions over
infinity. This is fine if we are only doing the
math, but if we are interested in finding Fou-
rier transform in real-time applications it is
just not possible. We need to use some tricks
to make it a usable solution. Firstly, we must
have a finite duration signal and a finite spec-
tral band. Secondly, the signal must have fi-
nite time samples and the spectrum must have
finite frequency components. This is precisely
what we are going to have, following the
steps given here.

Let us begin with a continuous-time non-
periodic signak(t) as shown in Figure 6(a).
Its Fourier transform would b§w) ,which is
continuous and non-periodic in frequency do-

Circle 25 or visit freeproductinfo.net/rfd
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main. Now, we sample the signal at intervalprocess. domain. Thus, we consider one period of the
of T making it discrete in time. One of the The next step is to make this spectrunfinal discrete spectrum as the discrete Fourier
theorems in signal processing is that multiplidiscrete by sampling it ato Hz. Again this transform of one period of the discrete peri-
cation in time domain is equivalent to convoprocess in frequency domain affects our timeadic signal. Equations 14 and 15 provide
lution in frequency domain and vice versadomain signal by making it periodic as showrDFT synthesis and analysis equations.

Since sampling is multiplication aft) with  in Figure 6(c). This is the result of convolu- | A

sampling signas(t)in time domain, it results tion of the signal with an impulse train with ay(;;) = 72X(k)ej(2n/ N)n (14)

in the convolution of the signal spectrunperiod1/fo We now have a discrete-time sig- N

with the spectrum af(t), which is a series of nal and its discrete Fourier transform. Both v

harmonics offsas shown in Figure 6(b). If these extend to infinity but are periodic.X(k)=2x(n)e,j(2mv)kn
you remember the amplitude modulation sped¢ience, we take one period in each domain by ~

trum you will recognize that the spectrum irmultiplying by a rectangular function. This is "= . .

Figure 6(b) is just the modulation of eaclealled windowing. Windowing in one domainOf Lht?rsgnstgrispilsegqcua?gg Z%%%ﬁgsotsr;ﬁ%set

harmonic ofs by s(t). Convolution is just that will, of course, affect the signal in anomerexponentials (sine and cosine terms) whose

(15)

40

magnitude is given by the analysis equation.
Thus, eactX(k) representing the magnitude
of sine and cosine components is obtained by
the spot correlation of thid samples of the
signal segment arld samples of the sine and
cosine components. Computing each value
of X(k) requiredN multiplications and as there
areN values for k, we neas? multiplications

to compute the DFT.

When we try to analyze the signals using
DFT in practice, we first obtain a discrete
signal by sampling as shown in Figure 7(a),
and take a segment of samples by and
windowing as shown in Figure 7(b). Next,
we imagine that the segment is periodic, i.e.
the segment is extended on either side as
shown in Figure 7(c). For this signal we
compute the coefficients of one period of the
discrete Fourier transform using Equation
15. Then, we move onto the next segment in
the sequence of samples and repeat our com-
putation of DFT coefficients. The represen-
tation through samples of the Fourier trans-
form is in effect a representation of the
finite-duration sequence by a periodic se-
quence, one period of which is the finite-
duration sequence we wish to represent.

The physical meaning of the transform, if
understood in terms of spot correlation, can
help us interpret DFT, and can take away the
intimidation factor of DFT equation®FD
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